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Summary: Epidermal growth factor receptor (EGFR) is a preferred target for treating cancer. 

Compared to 3D-QSAR, 4D-QSAR has the feature of conformational flexibility and free alignment 
for individual ligands. In present studies, the 4D-QSAR of 131 analogs of 4-anilino quinazoline for 

EGFR inhibitors was built. The GROMACS package was employed to yield the conformational 
ensemble profile. The field descriptors of Coulomb and Lennard−Jones potentials were calculated by 

LQTA-QSAR (Laboratory of Theoretical and Applied Chemometrics, QSAR). The filter descriptors 
and variable selection is very important, which was performed by means of comparative distribution 

detection algorithm (CDDA), ordered predictors selection (OPS) and genetic algorithm (GA) method. 
Best 4D-QSAR model yielded satisfactory statistics (R2 = 0.71), good performance in internal (Q

2 

LOO 

= 0.60) and external prediction (R
2 

pred = 0.69, k = 0.97, k′ = 1.01). The 4D-QSAR was shown to be 
robust (Q

2 

LMO = 0.59) and was not built by chance (R
2 

YS = 0.17, Q
2 

YS = −0.25). The model has a good 

potential for rational design new EGFR inhibitors. 
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Introduction 

 

Epidermal growth factor receptor (EGFR) is 

the prototype of receptor tyrosine kinases (TKs) 

family [1]. As a transmembrane glycoprotein, several 

signal transduction cascades are initiated, and lead to 

DNA synthesis and cell proliferation when EGFR is 

activated [2]. So EGFR plays an important role in the 

regulation of several cellular functions such as 

survival, cell growth, differentiation, proliferation, and 

apoptosis [3]. The mutation or amplification of EGFR 

was found in solid tumors, such as lung cancer, glioma, 

breast cancer, and ovarian cancer. Currently, EGFR is 

a potential target for cancer therapy [4-7]. The EGFR 

inhibitor, lapatinib, is approved for the treatment of 

breast cancer by the FDA [8]. Other EGFR inhibitors, 

such as lomustine, temozolomide, gefitinib, and 

erlotinib, have also been approved by the FDA for the 

treatment of glioma [9]. However, in many cancer 

types as breast cancer, hepatocellular carcinoma, 

pancreatic cancer, non-small cell lung cancer, 

colorectal carcinoma, glioblastoma, and melanoma, 

there are significant resistance to the used EGFR 

inhibitors [10]. All these findings make requires to 

design and synthesize new potent EGFR inhibitors. 

 

Before the synthesis, it is necessary to 

develop a prediction method for biological activities. 

Quantitative structure-activity relationship (QSAR) is 

an important part for modern drug design, including 

risk assessment, drug discovery and predictive 

toxicology [11, 12]. Initially, two-dimensional 

quantitative structure-activity relationship (2D-QSAR) 

and three-dimensional quantitative structure activity 

relationship (3D-QSAR) were extensively explored in 

medicinal chemistry study. However, the major 

constraint of 3D-QSAR is its dependency and 

sensitivity to conformations and alignments of 

compounds [13], because only one conformation, not 

a conformational ensemble profile, is considered for 

each compound [14]. To overcome inherent constraint 

of 3D-QSAR, the four-dimensional quantitative 

structure activity relationship (4D-QSAR) was 

originally developed which includes the freedom of 

alignment and the conformational flexibility to build 

3D-QSAR by performing molecular state ensemble 

averaging, i.e., the fourth “dimension” [15]. 

 

The LQTA-QSAR (Laboratório de 

Quimiometria Teórica e Aplicada), a 4D-QSAR 

approach, often calculates a large number of 

descriptors (variable), frequently several thousands 
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[16]. Hence, the variable selection is very important 

when generating 4D-QSAR model. The comparative 

distribution detection algorithm (CDDA) can classify 

descriptors according to distribution profile, which 

compares individual distributions of a descriptor with 

dependent variables, and computes dissimilarity 

statistics [17]. CDDA enables numerical inspection of 

bivariate scatter plots and helps in filtering (selection) 

of descriptors which is suitable to establish 4D-QSAR 

model. The ordered predictors selection (OPS) is able 

to get an informative vector that contains information 

about the location of the best response variables for 

prediction. The OPS was shown to avoid overfitting 

and chance correlation, and be robust for QSAR model 

[18]. The genetic algorithm (GA), a stochastic method, 

enables to solve optimization problems of fitness 

criteria, which applies different genetic functions and 

evolution hypothesis of Darwin, i.e. mutation and 

crossover [19]. 

 

In present work, we aimed to build a 4D-

QSAR model of the EGFR inhibitors by means of 

CDDA-OPS-GA method for descriptors selection. The 

regression methods used were multiple linear 

regression (MLR). It is the first to report the 4D-

QSAR model of 4-anilino quinazoline derivatives as 

EGFR inhibitors. 

 

Experimental 

 

Data set 

 

All inhibitors of EGFR were taken from 

literature [20-23]. In order to provide numerically 

larger data values, the biological activities expressed 

as IC50 values in units of molarity were transformed to 

pIC50 (−logIC50) which were used as dependent 

variables. All of the compounds were divided into the 

training set of 105 compounds and the test set of 26 

compounds taking into account both the distribution of 

dependent variables and the structural diversity. The 

training set was used to construct 4D-QSAR model, 

and the test set was used to evaluate the predictive 

quality. The chemical structures and IC50 values of the 

data set are presented in Fig. 1 and Tab. S1.  

 

4D-QSAR study 

 

The 3D structures of all of the compounds 

were built by means of Ghemical program [24]. The 

structures were optimized with the ffG43a1 force field. 

Then partial atomic charges of AM1-BCC method 

were computed with AMBER ff03 atom types using 

UCSF Chimera [25]. The topology files of compounds 

were obtained by the topobuild program. In order to 

obtain conformational ensemble profile (CEP), the 

molecular dynamics (MD) simulations of all 

compounds were performed by the GROMACS 

software (version 4.5.4) [26]. All compounds were put 

in the dodecahedron box which filled with water 

molecules. Long-range electrostatics and van der 

Waals interaction energies were computed by means 

of Particle Mesh Ewald method with a cut off radius 

of 10 Å [27]. System temperature was controlled by 

Berendsen thermostat coupling, and pressure was kept 

by Parrinelloe Rahman coupling [28]. System was 

optimized by the steepest descent and conjugated 

gradient method. Using the script of LQTAgrid 

software [29], the stepwise heating method was run 

which included heating the system at 50 K, 100 K, 200 

K and 350 K for 20 ps in 1 fs step size. The system was 

then backed to 300 K for 500 ps. The trajectory file 

was recorded every 10 ps simulation time. 

 

 

 

Fig. 1: The structure of data set and red atoms used 

for alignment. 

 

 

The compound 47 was chosen as the 

reference of alignment due to the most active 

compound among all compounds. All conformations 

generated in MD simulations at 300 K were 

superimposed to the reference using the index number 

of common atoms. The atoms, which were selected for 

alignment, are shown in Fig. 1. During the alignment, 

the initial conformer generated at 20 ps was selected, 

then other trajectories, which were generated up to 100 

ps times with 2 ps increment, were subjected to 

alignment using the least squares method to compute 

the minimum root mean- square of the distances 

(RMSD). The aligned CEPs of the most active 

compound 47 (reference) and alignment with CEPs of 

least active compound 126 are shown in Fig. 2. 

 



Biying Cai et al.,         J.Chem.Soc.Pak., Vol. 47, No. 03, 2025   206 
  

 

 

Fig. 2: The aligned CEPs generated in MD simulations. A): aligned CEPs of the least active compound 126 

(represented by licorice), B): alignment of the most active compound 47 (represented by line) with 

compound 126. 

 

The grid box was defined as 20 × 19 × 17 Å 

which was large enough to accommodate all 

conformers. The aligned molecules were submitted to 

the LQTAgrid program to calculate the energy 

descriptors of intermolecular interaction every grid 

point of a 1 Å grid cell lattice. The NH3
+ probe was 

selected to simulated N-terminus moiety of protein. 

The Coulomb interaction descriptors (C descriptors) 

and Lennard-Jones potential descriptors (LJ 

descriptors) were calculated. The dimension of the 

descriptor matrix was 131 × 15120, where each row is 

a compound and each column is a descriptor.  

 

 

 

Fig. 3: The equation for truncating both LJ and C 

descriptors. 

 

Descriptor selection and model construction 

 

First, it is necessary to truncate both LJ and C 

descriptors, in order to avoid large values with high 

orders of magnitude, and to keep information in the 

region close to the compounds [30]. When the distance 

between the atoms of compound and probe is close to 

zero, interaction energy generates a large value which 

do not benefit to the model. Based on equation (1) and 

(2) (Fig. 3), if the absolute value of interaction energy 

was more than 30 kcal/mol, the logarithmic value of 

residual was added to 30 kcal/mol.  

 

Second, if the variance of descriptors is 

below of 0.01, then the descriptors are excluded. 

Because the descriptors are far from compounds, and 

contains very little information. 

 

Third, the pearson correlation coefficients 

between descriptors and dependent variables were 

calculated (r vector) using correlation coefficient cut-

off according to the equation (3) [17], where Z0.99 is 

the number of standard deviations equal to 2.33, 

extending from the mean of normal distribution (µ = 0) 

required to contain 99% of the area, and  is the 

standard deviation of rrand. When the absolute value of 

|r|cut-off was lower than 0.3, the descriptors were 

excluded. This method can eliminate most of noise. 

 

|r|cut-off = Z0.99       (3) 

 

Forth, the CDDA was performed to exclude 

descriptors whose distribution is inconsistent with 

dependent variables [31]. The descriptors were sorted 

in descending order according to their absolute value 

of correlation coefficients. The hyperparameter m 

(0.05 - 1, step 0.01) was applied to adjust the number 

of descriptors which were used to build 4D-QSAR 

model. 

 

Fifth, the OPS method attaches importance to 

each descriptor based on a vector; then the matrix of 

descriptors is rearranged according to their relevancy. 

The most relevant/important descriptors are 
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represented by the first column of the matrix [31]. 

Successive partial least squares (PLS) regressions are 

performed by increasing the descriptors number in 

order to select the set that build the best latent variables 

(LVs) for correlation with the endpoints [32]. The 

process is repeated in an iterative manner 

 

Finally, GA in QSRINS package [33], which 

is a software for the development and validation of 

multiple linear regression (MLR) model, was applied 

to choose the most appropriate descriptors for 

model. The GA performs its optimization make use of 

variation and selection via the evaluation of the fitness 

function. GA is a stochastic technique well suited to 

the problem of variable selection and optimization, 

and is proved to be effective as a variable selection 

method. 

 

Model evaluation 

 

The internal validation of 4D-QSAR model 

was performed to establish robustness and internal 

stability. For internal validation, leave-one-out cross-

validation (Q2 

LOO) is the most preferred technique in 

which each compound of the training set was removed 

once from the dataset, and the biological activity of 

removed compound was predicted from the model. 

Leave-many-out cross-validation (Q2 

LMO) method was 

also used which carried out for 30% of data out of 

training each run [34]. In order to check the chance 

correlation, Y-Scrambling testing was performed in 

which the dependent variable vector, Y-vector, is 

randomly shuffled many times, then a new QSAR 

model is built making use of the original independent 

variable matrix and the R 2 

YS  and Q 2 

YS  values are 

calculated each time.  

 

The external validation was used to evaluate 

the predictive accuracy. The model equation, built 

using the training set compounds, was applied to test 

set compounds, and the biological activity of test set 

compounds was computed. The predictive accuracy is 

checked in terms of the RMSE, MAE, S, CCC, PRESS, 

Q2 

F1, Q
2 

F2, Q
2 

F3, Δr2 

m,r2 

m and Golbraikh-Tropsha statistics 

which calculates the slopes (i.e. k and k′) of the 

regression lines of the external validation [35, 36].  

 

Results and Discussion 

 

Analysis of MD trajectories 

 

Following successful simulation, the MD 

trajectories were investigated for dynamic behavior. 

The last trajectories, obtained for the 500 ps 

simulations, were analyzed. For some less active 

compounds (compounds 73, 110, 125, 126, 130 and 

131) and more active compounds (compounds 12, 36, 

47, 48, 61 and 67), the root mean square deviations 

(RMSD) values, which were calculated from the 

reference trajectories obtained at the end of 

simulations of 350 K with the trajectories obtained 

during simulations of 300 K, stayed within 0.20 nm 

range (Fig. 4). The RMSD fluctuation of compound 

125 is greater than that of other compound, due to 

compound 125 containing the flexible ester group at 

position 3. The conformations of target compounds did 

not drastically change during the MD simulations. 

This indicates that an equilibrium state of target 

compounds was reached characterized by the RMSD 

profile. 

 

 

 

Fig. 4: Graphs showing RMSD value. A): RMSD value of less active compounds. B): RMSD value of more 

active compounds. 
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4D-QSAR model 

 

The 4D-QSAR model with 18 variables was 

shown to be the best model by the leave-one-out cross-

validation, which resulted in R2 = 0.71 and Q2 

LOO = 0.60 

and R2 

Pred = 0.69. The details of the 4D-QSAR model 

statistics are shown in Tab. 1. R2 = correlation 

coefficient, R2 

ad = adjusted correlation coefficient, 

RMSEtr = root mean square error of training set, 

RMSEcv = root mean square error of cross-validation, 

RMSEext = root mean square error external, MAEtr = 

mean absolute error of training set, MAEcv = mean 

absolute error of cross-validation, MAEext = mean 

absolute error external, CCCtr = concordance 

correlation coefficient of training set, CCCext = 

concordance correlation coefficient external, S = 

standard error of estimate, F = fischer ratio, Q2 

loo = 

square of the cross-validated correlation coefficient 

from leave-one-out, Q2 

LMO = square of the cross-

validated correlation coefficient from leave many-

out,r2 

m = average r2 

m, Δr2 

m = delta r2 

m, Q2 

F1, Q2 

F2, Q2 

F3 = 

predictive squared correlation coefficient, k′, k = slope 

of regression line, PRESScv = predictive residual sum 

of squares from cross-validation, PRESSext = 

predictive residual sum of squares external, R2 

YS = R2 

of Y-Scrambling, Q2 

YS = Q2 of Y-Scrambling, R2 

Pred = 

correlation coefficient of test set. It can be concluded 

that the model presents good predictive power, as the 

model satisfied the external and internal validation 

criteria: R2 > 0.6, Q2 

LMO and Q2 

LOO > 0.5, CCC > 0.85, Q
2 

F1, Q
2 

F2 and Q2 

F3 > 0.6, r2 

m > 0.5, Δr2 

m < 0.2 and 0.85 ≤ k 

≤ 1.15 or 0.85 ≤ k′ ≤ 1.15 [37]. The difference between 

R2 and Q2 

LOO is 0.11 units, less than 0.2, indicating the 

absence of over-fitting [38]. The Q2 

LMO (0.59) is close 

to Q2 

LOO (0.60), the model is considered robust. The 

averages R2 

YS (0.17) and Q2 

YS (-0.25) are smaller than 

the values of the original model, so the 4D-QSAR was 

not built by chance. In addition, other validation 

parameters were within acceptable limits. 

 

Table-1: The statistical parameters of 4D-QSAR 

model. 
Statistical 

parameter 

Model with 

18 variables 

Statistical 

parameter 

Model with 

18 variables 

R2 0.71 MAEcv  0.84 

R
2 

adj 0.65 PRESScv  13.82 

RMSEtr  0.87 Q
2 

LMO  0.59 

MAEtr  0.69 R
2 

YS  0.17 

CCCtr  0.89 Q
2 

YS  -0.25 

S  0.96 RMSEext 0.84 

F  11.84 MAEext  0.70 

Q
2 

LOO  0.60 PRESSext  8.47 

RMSEcv  1.04 R
2 

Pred  0.69 

r
2 

m  0.57 CCCext 0.86 

Q
2 

F1  0.67 Δr
2 

m  0.16 

Q
2 

F3  0.73 Q
2 

F2  0.67 

k′  1.01 k  0.97 

The model equation with 18 variables is 

given in Equation 4. In terms of least squares curve 

fitting method, the values of the regression coefficient 

were calculated. The variable with positive values is 

favorably contributing to the model, whereas the 

variable with negative coefficients is inversely 

contributing to the model. The plot for experimental 

pIC50 against predicted pIC50 is shown in Fig. 5.  

 

pIC50 = 0.0167*(C1) − 0.0009*(C2) − 

0.0114*(C3) − 0.0076*(C4) − 0.0051*(C5) + 

0.0160*(LJ1) + 0.0125*(LJ2) + 0.0024*(LJ3) + 

0.2405*(LJ4) + 0.0037*(LJ5) + 0.0147*(LJ6) + 

1.4731*(LJ7) − 0.0113*(LJ8) − 0.0239*(LJ9) − 

0.0096*(LJ10) − 0.0146*(LJ11) − 0.0241*(LJ12) − 

0.0157*(LJ13) + 8.7873     (4) 

 

 

 

Fig. 5: Predicted pIC50 versus experimental pIC50 for 

training set and test set compounds. 

 

The descriptors are designated as C1: 

X24_21_15_NH3
+_C, C2: X21_27_11_NH3

+_C, C3: 

X25_29_10_NH3
+_C, C4: X29_21_17_NH3

+_C, C5: 

X29_24_14_NH3
+_C, LJ1: X21_22_16_NH3

+_LJ, LJ2: 

X27_26_17_NH3
+_LJ, LJ3: X28_18_15_NH3

+_LJ, LJ4: 

X28_27_6_NH3
+_LJ, LJ5: X29_18_13_NH3

+_LJ, LJ6: 

X32_22_16_NH3
+_LJ, LJ7: X34_29_10_NH3

+_LJ, LJ8: 

X25_21_14_NH3
+_LJ, LJ9: X28_29_9_NH3

+_LJ, LJ10: 

X29_24_16_NH3
+_LJ, LJ11: X29_26_13_NH3

+_LJ, 
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LJ12: X31_21_19_NH3
+_LJ, LJ13: 

X32_21_11_NH3
+_LJ. Each descriptor denotes the 

specific interaction energy at the specific grid point. The 

C1 represents the Coulomb descriptor at the grid point 24, 

21 and 15 along the X, Y and Z axes respectively. 

Similarly, the LJ1 represents the Lennard–Jones 

descriptor at the grid point 21, 22 and 16 along the X, Y 

and Z axes respectively. Compare with the R2 and Q2 of 

the original model, R2 

YS and Q2 

YS was lowest in the Y-

scrambling test which implies no chance correlation in 

the model (Fig. 6).  

 

 

 

Fig. 6: Plot of Y-scrambled models compared with 

the original model. 

 

 

Fig. 7: Plot of leverages against standardized 

residuals. Dashed lines and dotted lines 

represent ±3.0 standardized residual and 

warning leverage (h* = 0.543). 

 

Model applicability domain 

 

The leverage method was used to verify the 

chemical applicability domain (AD) and the 

robustness of model. The leverage, h*, for each 

molecule was calculated by this method. The warning 

leverage is generally fixed at 3LV/m, where LV is the 

latent variable and m is the number of training set 

compounds. It can be seen from the AD analysis 

results presented in Fig. 7 that there are no outliers for 

all compounds. More importantly, the test compounds 

which were not applied to build model are predicted 

with similar accuracy of the training compounds. 

 

Contour maps of 4D-QSAR 

 

Graphical representations of the 4D-QSAR 

model are shown in Fig. 8. Blue regions are the 

electrostatic descriptors corresponding to negative 

regression coefficients and red regions are the 

electrostatic descriptors related to positive regression 

coefficients. Likewise, Yellow regions and green 

regions denote steric descriptors with negative and 

positive regression coefficients, respectively. The 

descriptors LJ7 and LJ11 at 3 position (the numbers of 

compounds as shown in Fig. 1) indicate sterically 

favorable and unfavorable region respectively for 

biological activity (such as compound 125). The 

descriptors LJ4 and LJ9 near the R3 position also show 

sterically favorable and unfavorable region 

respectively (such as compound 52). The blue 

descriptor C3 near 1 position describes electron-

withdrawing substituent is preferred, like compound 

130, and 131. The descriptors C2 and LJ1 are related 

to R1 group, which suggests bulky group at 6 position 

(such as compound 65 contain butoxyl group) and 

electron-withdrawing group at 7 position (such as 

compounds 15 – 19 containing nitro group) is 

preferred. The R2 group at phenyl ring describes 

structural information related to conformational 

flexibility of substituent group. The descriptors C4 and 

LJ12 show small group with negative-charge increase 

the compound’s bioactivity. The descriptors LJ5 and 

LJ3 near R2 position of compound 111 containing 

isopropyl group indicate that bulky group is favorable. 

The descriptors LJ8 and C1 describe that a small group 

with positive-charge is preferred, such as compound 

103. The descriptors LJ10 and C5 prefer small groups 

with negative-charge like compound 110. The 

descriptors LJ6 and LJ13 show sterically favorable 

and unfavorable region respectively, such as 

compounds 106 and 108, the former contains the 2’-Cl 

substituent and the latter contains the 2’-SMe 

substituent. The coefficient of LJ7 is the largest in the 

model equation, so the green descriptor LJ7 can be 

mostly connected with the activity.  
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Fig. 8: Different perspectives of the steric and electrostatic contour maps of 4D-QSAR model. 

 

Propose of new compounds 

 

Based on these observations, 3 new 

compounds were designed, and the 4D-QSAR model 

generated was used to predict biological activity for 

each compound (shown in Tab. 2). We first consider -

O(CH2)2CH(CH3)2 group as the substituent R1, 

because its terminal CH3 group just interacts with the 

green LJ1. Meanwhile, we also consider -

(CH2)3CH(CH3)2 group as the substituent R4, because 

its terminal CH3 group can interact with the green LJ7. 

For R5, the -SO3H group was introduced, because -

SO3H has the steric bulk contribution and the electro-

static contribution and fall into the area of LJ3, LJ5 

and C4. For R2 and R3, electron-withdrawing groups 

of -OH and -CH2NO2 were introduced to interact with 

blue C2 and C3 (Fig. 9).  

 

From Table-2, we can see that the predicted 

biological activities are all higher than that of 

compound 47 (pIC50 = 11.22). Such results further 

suggest that this 4D-QSAR model has a strong 

predictive ability and can be prospectively used in 

structural modification or molecular design 

 

 

Fig. 9: The steric and electrostatic contour maps of 

new compound D3 with 4D-QSAR model. 

 

Table-2: Potential new compounds with in silico biological activity. 

 
Comp R1 R2 R3 R4 R5 Predicted pIC50 

D1 -O(CH2)2CH(CH3)2 -OH -CH2OH -CH2OH SO3H 11.69 

D2 -O(CH2)2CH(CH3)2 -OH -CH2NO2 -CH2OH SO3H 11.82 

D3 -O(CH2)2CH(CH3)2 -OH -CH2NO2 -(CH2)3CH(CH3)2 SO3H 12.62 
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Conclusion 

 

In this paper, the CEPs were constructed by 

using GROMACS dynamics simulation and 

interaction energy descriptors, i.e. Lennard–Jones 

interaction energy descriptors and Coulomb 

interaction energy descriptors were calculated using 

LQTAgrid program. Through the combination of 

CDDA-OPS-GA method for filtration and selection 

descriptors, this 4D-QSAR model had achieved 

satisfactory results. It could be concluded that large 

group with electron-withdrawing increases the 

compound’s bioactivity for R1 group, the R2 group 

describes conformational flexibility of substituent 

group, the bulky group is preferred for R3 group, the 

electron-withdrawing group and large group is 

preferred for 1 position and 3 position of quinazoline 

ring. 
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